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29.  Output Signal-to-Noise Ratios in AM and FM

In digital modulation systems, we were able to determine the system performance quite
uniquely by calculating the probability of error.  Because of the continuous nature of
analogue modulation systems, it is difficult to adopt this approach.  Instead, we shall
determine and compare the performance of analogue modulation systems on the basis of
signal-to-noise ratio (SNR) at the receiver input and output.

Performance of Amplitude Modulation [1, 2]

We have seen that the a normal amplitude-modulated signal is given by

sc(t) = [A  + m(t)] cos 2πfct (29.1)

= A[1  + 
1
A

m(t)] cos 2πfct (29.2)

where A is a constant, m(t) is the modulating signal, and fc is the carrier frequency.

The modulation index is defined as [1]

 m = 
| min ( ) |m t

A
(29.3)

and equation (29.2) can be written as

sc(t) = A[1  + 
m

m t| min ( ) |
m(t)] cos 2πfct (29.4)

= A[1  + Km(t)] cos 2πfct (29.5)

where K = m / |min  m(t)|.

Consider the amplitude demodulator shown in Figure 29.1.  

Figure 29.1  Idealised amplitude demodulation using an envelope detector.

In the presence of additive noise, the signal plus narrowband noise at the output of the
band-pass filter is

v(t) = A[1  + Km(t)] cos 2πfct + n(t) (29.6)

where
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n(t) = x(t) cos 2πfct - y(t) sin 2πfct (29.7)

The input signal power to the envelope detector is

Si = 
A A K Pm

2

2

2 2

2
+ (29.8)

where Pm is the average power of m(t).  Substituting equation (29.7) into equation

(29.6), we get

v(t) = {A[1  + Km(t)] + x(t)}cos 2πfct - y(t) sin 2πfct

= { [ ( )] ( )} ( )A Km t x t y t1 2 2+ + +  cos [2πfct + φ(t)] (29.9)

= { [ ( )] ( )} ( )A Km t x t y t1 2 2+ + +  cosθ(t) (29.10)

= Re { { [ ( )] ( )} ( )A Km t x t y t1 2 2+ + +  ejθ(t)} (29.11)

where

φ(t) = tan-1
y t

A Km t x t

( )
[ ( )] ( )1 + +

(29.12)

and

θ(t) = 2πfct + φ(t) (29.13)

Figure 29.2 shows the signal v( t) in polar form with an envelope of

{ [ ( )] ( )} ( )A Km t x t y t1 2 2+ + + .

Figure 29.2  Phasor diagram for AM signals plus narrowband noise.

For large input signal-to-noise ratio, the output of the low-pass filter is

e(t) ≈  A[1 + Km(t)] + x(t) (29.14)

Ignoring the first term arising from the carrier signal, the output signal power is

So = 
A K Pm

2 2

2
(29.15)
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Let Gn(f) be the power spectral density of the narrowband noise n(t) shown in Figure

29.3.

Figure 29.3  Narrowband noise power spectral density.

The mean noise power entering the envelope detector is

E[n(t)2] = Ni = 

−∞

∞
∫ Gn(f) df 

= 

− −

− +

∫
fc B

fc B
n0
2

df  +

fc B

fc B

−

+

∫ n0
2

df 

= n0B + n0B

= 2n0B (29.16)

where B is the bandwidth of the modulating signal m(t).

Also, let Gx(f) and Gy(f) be the power spectral densities of the quadrature components

x(t) and y(t) of the noise n(t).  They are found to be given by 

Gx(f) = Gy(f)

= 2 Gn(f + fc) (29.17)

=  n0 (29.18)

The mean noise power at the output of the low-pass filter is

No = 

−
∫
B

B
 Gx(f) df

= 2n0B (29.19)

Therefore the output signal-to-noise ratio is

So
No

 = 
K Pm

K Pm

2

1 2+
Si
Ni

(29.20)
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If m(t) = am cos 2πfct, then Pm = 
am

2

2
, K = m / am, and

So
No

 = 
m

m

2

2 2+
Si
Ni

(29.21)

For large input SNR and a fixed modulation index, the output SNR is directly
proportional to the input SNR.  When the input SNR << 1, the envelope signal is
primarily dominated by the envelope of the noise signal and the modulating signal is badly
mutilated.  Under this circumstance, it is meaningless to talk about output SNR.  The loss
of the modulating signal at low input SNR is called the threshold effect. The threshold
occurs when  the input SNR < 10 dB.  It can be shown that, for a small input SNR, the
output SNR of the envelope detector is proportional to the squared input SNR [2, 3].
Figure 29.4 shows a typical asymptotic signal-to-noise characteristic for an envelope
detector.

Figure 29.4  Asymptotic signal-to-noise characteristic for envelope detector.

Performance of Frequency Modulation [1, 3, 4]

Let kf be a constant and mf(t) be the modulating signal.  A frequency-modulated signal

is given by [1]

sc(t) = Acos [2πfct + φ(t)] (29.22)

= A cos θ(t) (29.23)

where

θ(t) = 2πfct + φ(t) (29.24)

φ(t) = kf

−∞
∫
t1

mf(t)dt (29.25)

and

dφ (t )
dt

 = kfmf(t) (29.26)

The peak frequency deviation is defined as [4]
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∆f = max | 1
2π

dφ (t )
dt

| (29.27)

Because of the difficulty of analysing general frequency-modulated signals, we shall only
consider a sinusoidal modulating signal.  Let the modulating signal of a single-tone FM
signal be

 mf(t) = am cos 2π fmt (29.28)

Substituting (29.28) into (29.25), we have 

φ(t) = 
k
f
am

2π fm
sin 2π fmt (29.29)

= βf sin 2π fmt (29.30)

where βf = kf am/(2πfm), and the frequency modulation index βf is only defined

for a sinusoidal modulating signal. Substituting equation (29.30) into (29.22), we have

sc(t) = Acos (2πfct + βf sin 2πfmt) (29.31)

The input signal power to the frequency demodulator  is

Si = 
A2

2
(29.32)

 and

φ(t) = kf

−∞
∫
t1

mf(t)dt = βf sin 2πfmt (29.33)

Differentiating both sides with respect to time and solving for mf(t), we get

mf(t) = 
2π βfm f

k f
cos 2πfmt

Hence the output signal power is

So = 
1
2

2
2π βB f

k f









 (29.34)
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where B = fm is the bandwidth of the modulating signal mf(t).  

To simplify the analysis of noise in FM systems, we assume  mf(t) = 0 and consider the

frequency demodulator shown in Figure 29.5.

Figure 29.5  Frequency demodulation using a frequency discriminator.

The input signal to the limiter is

r(t) = Acos 2πfct + n(t) (29.35)

where

n(t) = x(t) cos 2πfct - y(t) sin 2πfct (29.36)

Substituting n(t) into equations (29.35), we get

r(t) = [x(t) + A]cos 2πfct - y(t) sin 2πfct

= [ ( ) ] ( )x t A y t+ +2 2  cos [2πfct + φ(t)] (29.37)

= [ ( ) ] ( )x t A y t+ +2 2  cosθ(t) (29.38)

where

φ(t) = tan-1
y t

x t A

( )
( ) +

(29.39)

and

θ(t) = 2πfct + φ(t)

The signal at the output of the limiter is

v(t) = Kcosθ(t) (29.40)

Setting K = 1 and taking the derivative of θ(t), the output of the differentiator is given
by

v’ (t) = -sinθ(t) 
d t

dt

θ( )
(29.41)
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= -sinθ(t) [2πfc + 
d t

dt

φ( )
]

and the signal at the output of the low-pass filter is

e(t) = 2πfc + 
d t

dt

φ( )

where

d t

dt

φ( )
 = φ̇  = 

[ ( ) ]
( )

( )
( )

( ) [ ( ) ]

x t A
dy t

dt
y t

dx t

dt
y t x t A

+ −

+ +2 2 (29.42)

For large signal-to-noise ratio at the input of the frequency demodulator,

φ̇   ≈  
1
A

dy t

dt

( )
(29.43)

and the signal at the output of the low-pass filter is 2πfc + 
1
A

dy t

dt

( )
.  We can ignore the

first term arising from the carrier frequency, which can be removed by a blocking
capacitor.  Thus, y(t) must be the noise signal at the input of the differentiator with a
transfer function

H(f) = 
2πf

A
j

Proof.

Taking the Fourier transform of 
d t

dt

φ( )
 = 

1
A

dy t

dt

( )
, we get F [

d t

dt

φ( )
] =

2πf

A
j  Y(f) = H(f)Y(f) where H(f) = 

2πf

A
j . Q.E.D.

The transfer function of the differentiator in an FM receiver is shown in Figure 29.6.

Figure 29.6  Transfer function of a differentiator in an FM receiver.
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Let Gn(f) be the power spectral density of the narrowband noise n(t) shown in Figure

29.7 (a).

Figure 29.7  Narrowband noise power spectral density.

The mean noise power entering the differentiator is

E[n(t)2] = Ni = 

−∞

∞
∫ Gn(f) df 

= 

− −

− +

∫
BT fc

fc
BT

2

2 n0
2

df  +

fc
BT

BT fc

−

+

∫
2

2 n0
2

df 

= n0BT + n0BT
= 2n0BT (29.44)

Let Gx(f) and Gy(f) be the power spectral densities of the quadrature components

x(t) and y(t) of the noise n(t).  The noise power spectral density at the output of the
differentiator is given by

Gφ̇  (f)  = |H(f)|2 Gy(f)

= 
2 2πf

A






 Gy(f)

= 2 
2 2πf

A






 Gn(f + fc)

= 
2 2πf

A






 n0

This is shown in Figure 29.7 (b).  

The mean noise at the output of the low-pass filter with a bandwidth of B Hz is

No = 

−
∫
B

B
 Gφ̇  (f) df = 

2 2 2
0

3 2
( )π n

A
B3

= 
2 2 2

0
3 2

( )π n

A
B3 (29.45)
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Therefore the output signal-to-noise ratio is

So

No
 = 

1
2

2
2π βB f

k f











3 2

2 2 2 3
A

noB( )π
 = 

3
2( )k f

β f
2 A

Ni

2

2
 = 

3
2( )k f

β f
2 Si

Ni

(29.46)

As β increases, the bandwidth increases and the output SNR increases.  For a fixed input
SNR, an improvement in output SNR is possible with FM systems.  Can we keep

improving the output  SNR by simply increasing β?  If the modulating signal bandwidth
and the carrier power are fixed, more noise must be accepted by the limiter when we

increase β.   Eventually, the noise power becomes comparable with the carrier signal
power.  Equation (29.46) does not hold anymore and the noise is found to take over the
system.  A so called threshold effect occurs at a certain input SNR.  For angle-
modulated systems it is common to call the input SNR the carrier-to-noise ratio (CNR).
Figure 29.8 shows a typical signal-to-noise characteristic for a frequency discriminator.

Figure 29.8  Signal-to-noise characteristic for frequency discriminator.

To avoid the threshold effect, the CNR > 10 dB and β > 1/3 for output SNR > CNR.
It should be noted that we cannot improve the output SNR of narrowband FM systems

(β << π/2).
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Figure 29.1  Idealised amplitude demodulation using an envelope detector.
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Figure 29.2  Phasor diagram for AM signals plus narrowband noise.
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Figure 29.3  Narrowband noise power spectral density.
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Figure 29.4  Asymptotic signal-to-noise characteristic for envelope detector.
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Figure 29.5  Frequency demodulation using a frequency discriminator.
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Figure 29.6  Transfer function of a differentiator in an FM receiver.
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Figure 29.7  Narrowband noise power spectral density.
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Figure 29.8  Signal-to-noise characteristic for frequency discriminator.
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